Heterogeneous photocatalysts present a favourable procedure to realize green and eco-friendly organic reactions. We have demonstrated an SB-DABCO@eosin catalyst in a green one-pot multi-component protocol for the production of various… Click to show full abstract
Heterogeneous photocatalysts present a favourable procedure to realize green and eco-friendly organic reactions. We have demonstrated an SB-DABCO@eosin catalyst in a green one-pot multi-component protocol for the production of various chromeno[4,3-b]chromenes via condensation of aromatic aldehydes and dimedone under the photo-redox catalyst bearing eosin Y using visible light. The synthesized nanocatalyst was characterized using various physicochemical techniques such as FT-IR, XRD, EDX, UV-vis, SEM, TGA and DRS. The significant advantages of the present methodology include excellent yield, cost-effectiveness, easy work-up, 100% atom economy, broad substrate scope, easy separation and efficient recycling. Furthermore, the evidence showed that the investigated condensation reaction proceeds via a radical mechanism, which proved the need for reactive species such as OH˙ and ˙O2− in the photocatalytic process. In addition to the improved handling and process control, the yield of products and the rate of reactions have increased considerably in the present strategy. Reproducibility studies also guarantee good reusability and stability of the nanocatalyst for at least five runs.
               
Click one of the above tabs to view related content.