LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of emission and luminescent thermal stability of K2SiF6 : Mn4+ by synergy of co-doping with Na+ and coating with GQDs

Photo from wikipedia

The luminescence properties and thermal stability of phosphors are key properties for practical applications. A series of K2SiF6: Mn4+, Na+ @ GQDs (KSF: Mn4+, Na+ @ GQDs, KSF = K2SiF6,… Click to show full abstract

The luminescence properties and thermal stability of phosphors are key properties for practical applications. A series of K2SiF6: Mn4+, Na+ @ GQDs (KSF: Mn4+, Na+ @ GQDs, KSF = K2SiF6, GQDs = graphene quantum dots; here, Cl-contained graphene quantum dots are used) red light phosphors have been synthesized by using a combination of H2O2-free and hydrothermal coating methods. The fluorescence thermal stability and fluorescence intensity of the optimal phosphor are greatly improved by doping the matrix with Na+ and coating it with GQDs. The strong negative thermal quenching (NTQ) effect and the color stability of the phosphor at variable temperatures result in good thermal stability. The strong NTQ effect is attributed to the phonon-induced transition mechanism. The high thermal stability makes the optimal sample ideal for high-power light LEDs (WLEDs). The test results show that the prototype WLED with the optimal sample as the red light component produces warm white light. The light has high luminescent efficiency (101.6 lm W−1), low correlated color temperature (CCT = 3978 K), and high color rendering index (Ra = 92.2).

Keywords: stability; thermal stability; k2sif6 mn4; coating gqds

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.