Synthesis of ammonia from nitrogen and hydrogen is one of the largest manmade chemical processes, with annual production reaching 170 million tons. The Haber–Bosch process is the main industrial method… Click to show full abstract
Synthesis of ammonia from nitrogen and hydrogen is one of the largest manmade chemical processes, with annual production reaching 170 million tons. The Haber–Bosch process is the main industrial method for producing ammonia, which proceeds at high temperatures (400–600 °C) and pressures (20–40 MPa) using an iron-based catalyst. It is thus highly desirable to develop new catalysts with sufficient activity and stability under mild conditions. In this work, we report cobalt catalysts supported on magnesium–lanthanum mixed oxide with different Co loading amounts synthesised via a simple wet impregnation method. We have found a clear relationship between the ammonia synthesis rate and the Co loading amount. Specifically, the NH3 synthesis rate increased on increasing cobalt loading and reached a maximum at 40 wt% Co deposition. A further increase in Co loading did not change the activity significantly. Interestingly, the surface-specific activity (TOF) remained almost unchanged regardless of the Co loading amount in the catalysts. It revealed that the resultant ammonia synthesis rate over the studied catalysts did not depend on the size and structure of Co nanoparticles but strongly on the Co loading amount. Finally, it is believed that the use of this type of catalyst will be a starting point toward energy-efficient ammonia production.
               
Click one of the above tabs to view related content.