LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Induced abundant oxygen vacancies in Sc2VO5−δ/g-C3N4 heterojunctions for enhanced photocatalytic degradation of levofloxacin

Photo by jontyson from unsplash

Sc2VO5−δ/g-C3N4 heterojunctions (SVCs) with abundant oxygen vacancies (OVs) were synthesized by ultrasonic exfoliation combined with the thermal etching method. The structures, OVs and spatial separation of the photogenerated carriers were… Click to show full abstract

Sc2VO5−δ/g-C3N4 heterojunctions (SVCs) with abundant oxygen vacancies (OVs) were synthesized by ultrasonic exfoliation combined with the thermal etching method. The structures, OVs and spatial separation of the photogenerated carriers were systematically characterized. The results manifested that the SVCs were successfully constructed via the strong interaction between g-C3N4 (CN) and Sc2VO5−δ (SV). The SVCs possessed a higher concentration of OVs than that of pristine CN and SV. The formation of the SVC heterostructures and the optimization of the OVs were the two major factors to accelerate the separation of the charge carriers and finally to improve the photocatalysis performance. The as-prepared 10%SVC (containing 10 wt% of SV) catalyst exhibited the highest OV concentration and the best photocatalytic performance. The levofloxacin (LVX) photodegradation activity showed a positive correlation with the OV concentration. The photocatalytic degradation efficiencies were 89.1, 98.8 and 99.0% on 10%SVC for LVX, methylene blue (MB) and rhodamine B (RhB), respectively. These photodegradation processes followed the pseudo first order kinetic equation. The apparent rate constant (kapp) of LVX degradation on 10%SVC was 11.0 and 7.5 times that of CN and SV. The h+, ˙OH and ˙O2− were the major reactive species in the photodegradation process.

Keywords: oxygen vacancies; c3n4 heterojunctions; photocatalytic degradation; degradation; sc2vo5 c3n4; abundant oxygen

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.