Pyrroles are among the most important heterocycles in pharmaceuticals and agrochemicals. Construction of pyrrole scaffolds with different substituents and a free NH group, however, is challenging. Herein, a metal-free method… Click to show full abstract
Pyrroles are among the most important heterocycles in pharmaceuticals and agrochemicals. Construction of pyrrole scaffolds with different substituents and a free NH group, however, is challenging. Herein, a metal-free method for the synthesis of unsymmetrically tetrasubstituted NH-pyrroles using a consecutive chemoselective double cyanation is reported. The desired pyrroles were obtained with yields up to 99% and good functional group tolerance. Mechanistic studies identified a reaction mechanism that features a subtle sequence of first cyano-addition and migration, followed by cyano-addition and aromatization to afford the pyrrole skeleton. Pyrrolo[1,2-a]pyrimidines are synthesized as the synthetic applications of NH-pyrroles, and these pyrrolo[1,2-a]pyrimidines exhibit unpredicted time-dependent aggregation-induced emission enhancement (AIEE) properties.
               
Click one of the above tabs to view related content.