LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting

Photo from wikipedia

Electrochemical modification is a mild and economical way to prepare electrocatalytic materials with abundant active sites and high atom efficiency. In this work, a stable NiFeCuPt carbon matrix deposited on… Click to show full abstract

Electrochemical modification is a mild and economical way to prepare electrocatalytic materials with abundant active sites and high atom efficiency. In this work, a stable NiFeCuPt carbon matrix deposited on nickel foam (NFFeCuPt) was fabricated with an extremely low Pt load (∼28 μg cm−2) using one-step electrochemical co-deposition modification, and it serves as a bifunctional catalyst for overall water splitting and achieves 100 mA cm−2 current density at a low cell voltage of 1.54 V in acidic solution and 1.63 V in alkaline solution, respectively. In addition, a novel electrolyte was developed to stabilize the catalyst under acidic conditions, which provides inspiration for the development of highly efficient, highly stable, and cost-effective ways to synthesize electrocatalysts.

Keywords: modification; carbon; water splitting; nickel foam; electrochemical modification

Journal Title: Chemical Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.