LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intermolecular dearomative [4 + 2] cycloaddition of naphthalenes via visible-light energy-transfer-catalysis

Photo by mbrunacr from unsplash

The dearomative cycloaddition reaction serves as a blueprint for creating sp3-rich three-dimensional molecular topology from flat-aromatic compounds. However, severe reactivity and selectivity issues make this process arduous. Herein, we describe… Click to show full abstract

The dearomative cycloaddition reaction serves as a blueprint for creating sp3-rich three-dimensional molecular topology from flat-aromatic compounds. However, severe reactivity and selectivity issues make this process arduous. Herein, we describe visible-light energy-transfer catalysis for the intermolecular dearomative [4 + 2] cycloaddition reaction of feedstock naphthalene molecules with vinyl benzenes. Tolerating a wide range of functional groups, structurally diverse 2-acyl naphthalenes and styrenes could easily be converted to a diverse range of bicyclo[2.2.2]octa-2,5-diene scaffolds in high yields and moderate endo-selectivities. The late-stage modification of the derivatives of pharmaceutical agents further demonstrated the broad potentiality of this methodology. The efficacy of the introduced methods was further highlighted by the post-synthetic diversification of the products. Furthermore, photoluminescence, electrochemical, kinetic, control experiments, and density-functional theory calculations support energy-transfer catalysis.

Keywords: energy transfer; dearomative cycloaddition; transfer catalysis

Journal Title: Chemical Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.