LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries

Photo by armandoascorve from unsplash

Technical bottlenecks of polyselenide shuttling and material volume variation significantly hamper the development of emerging sodium–selenium (Na–Se) batteries. The nanopore structure of substrate materials is demonstrated to play a vital… Click to show full abstract

Technical bottlenecks of polyselenide shuttling and material volume variation significantly hamper the development of emerging sodium–selenium (Na–Se) batteries. The nanopore structure of substrate materials is demonstrated to play a vital role in stabilizing Se cathodes and approaching superior Na-ion storage properties. Herein, an ideal nanorod-like trimodal hierarchical porous carbon (THPC) host is fabricated through a facile one-step carbonization method for advanced Na–Se batteries. The THPC possesses a trimodal nanopore structure encompassing micropores, mesopores, and macropores, and functions as a good accommodator of Se molecules, a reservoir of polyselenide intermediates, a buffer for volume expansion of Se species during sodiation, and a promoter for electron/ion transfer in the electrochemical process. As a result, Na–Se batteries assembled with the Se–THPC composite cathode realize high utilization of Se, fast redox kinetics, and excellent cyclability. Furthermore, the Na-ion storage mechanism of the well-designed Se–THPC composite is profoundly revealed by in situ visual characterization techniques.

Keywords: hierarchical porous; nanorods enable; porous carbon; carbon nanorods; trimodal hierarchical

Journal Title: Chemical Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.