LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selection and evolution of disulfide-rich peptides via cellular protein quality control

Photo from wikipedia

Disulfide-rich peptides (DRPs) are an interesting and promising molecular format for drug discovery and development. However, the engineering and application of DRPs rely on the foldability of the peptides into… Click to show full abstract

Disulfide-rich peptides (DRPs) are an interesting and promising molecular format for drug discovery and development. However, the engineering and application of DRPs rely on the foldability of the peptides into specific structures with correct disulfide pairing, which strongly hinders the development of designed DRPs with randomly encoded sequences. Design or discovery of new DRPs with robust foldability would provide valuable scaffolds for developing peptide-based probes or therapeutics. Herein we report a cell-based selection system leveraging cellular protein quality control (termed PQC-select) to select DRPs with robust foldability from random sequences. By correlating the foldability of DRPs with their expression levels on the cell surface, thousands of sequences that can fold properly have been successfully identified. We anticipated that PQC-select will be applicable to many other designed DRP scaffolds in which the disulfide frameworks and/or the disulfide-directing motifs can be varied, enabling the generation of a variety of foldable DRPs with new structures and superior potential for further developments.

Keywords: protein quality; quality control; rich peptides; disulfide rich; drps; cellular protein

Journal Title: Chemical Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.