Functional structures with reversible shape-morphing and color-changing capabilities are promising for applications including soft robotics and biomimetic camouflage devices. Despite extensive studies, there are few reports on achieving both reversible… Click to show full abstract
Functional structures with reversible shape-morphing and color-changing capabilities are promising for applications including soft robotics and biomimetic camouflage devices. Despite extensive studies, there are few reports on achieving both reversible shape-switching and color-changing capabilities within one structure. Here, we report a facile and versatile strategy to realize such capabilities via spatially programmed liquid crystal elastomer (LCE) structures incorporated with thermochromic dyes. By coupling the shape-changing behavior of LCEs resulting from the nematic-to-isotropic transition of liquid crystals with the color-changing thermochromic dyes, 3D thermochromic LCE structures change their shapes and colors simultaneously, which are controlled by the nematic-isotropic transition temperature of LCEs and the critical color-changing temperature of dyes, respectively. Demonstrations, including the simulated blooming process of a resembled flower, the camouflage behavior of a "butterfly"/"chameleon" robot in response to environmental changes, and the underwater camouflage of an "octopus" robot, highlight the reliability of this strategy. Furthermore, integrating micro-ferromagnetic particles into the "octopus" thermochromic LCE robot allows it to respond to thermal-magnetic dual stimuli for "adaptive" motion and diverse biomimetic motion modes, including swimming, rolling, rotating, and crawling, accompanied by color-changing behaviors for camouflage. The reversibly reconfigurable and color-changing thermochromic LCE structures are promising for applications including soft camouflage robots and multifunctional biomimetic devices.
               
Click one of the above tabs to view related content.