LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of central sidechain on self-assembly of glycine-x-glycine peptides.

Photo from wikipedia

Low molecular weight gelators (LMWGs) are the subject of intense research for a range of biomedical and engineering applications. Peptides are a special class of LMWG, which offer infinite sequence… Click to show full abstract

Low molecular weight gelators (LMWGs) are the subject of intense research for a range of biomedical and engineering applications. Peptides are a special class of LMWG, which offer infinite sequence possibilities and, therefore, engineered properties. This work examines the propensity of the GxG peptide family, where x denotes a guest residue, to self-assemble into fibril networks via changes in pH and ethanol concentration. These triggers for gelation are motivated by recent work on GHG and GAG, which unexpectedly self-assemble into centimeter long fibril networks with unique rheological properties. The propensity of GxG peptides to self-assemble, and the physical and chemical properties of the self-assembled structures are characterized by microscopy, spectroscopy, rheology, and X-ray diffraction. Interestingly, we show that the number, length, size, and morphology of the crystalline self-assembled aggregates depend significantly on the x-residue chemistry and the solution conditions, i.e. pH, temperature, peptide concentration, etc. The different x-residues allow us to probe the importance of different peptide interactions, e.g. π-π stacking, hydrogen bonding, and hydrophobicity, on the formation of fibrils. We conclude that fibril formation requires π-π stacking interactions in pure water, while hydrogen bonding can form fibrils in the presence of ethanol-water solutions. These results validate and support theoretical arguments on the propensity for self-assembly and leads to a better understanding of the relationship between peptide chemistry and fibril self-assembly. Overall, GxG peptides constitute a unique family of peptides, whose characterization will aid in advancing our understanding of self-assembly driving forces for fibril formation in peptide systems.

Keywords: self assembly; central sidechain; chemistry; influence central; self; self assemble

Journal Title: Soft matter
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.