Switchable hydrophilicity solvents (SHSs) are solvents defined by their ability to switch from their hydrophobic form to a hydrophilic form when brought into contact with an acidic trigger such as… Click to show full abstract
Switchable hydrophilicity solvents (SHSs) are solvents defined by their ability to switch from their hydrophobic form to a hydrophilic form when brought into contact with an acidic trigger such as CO2. As a consequence, SHSs qualify as promising alternatives to volatile organic compounds during industrial solvent extraction processes, as greener and inexpensive methods can be applied to separate and recover SHSs. Furthermore, because of their less volatile nature, SHSs are less flammable and so increase the safety of a larger scale extraction process. In this work, we study the dynamics and in-drop phase separation during the dissolution process of a drop composed of a SHS and a polymer, triggered by an acid in the surrounding aqueous environment. From 70 different experimental conditions, we found a scaling relationship between the drop dissolution time and the initial volume with an overall scaling coefficient of ∼0.53. We quantitatively assessed and found a shorter dissolution time related to a decrease in the pH of the aqueous phase or an increase in the initial polymer concentration in the drop. Examining the internal state of the drop during the dissolution revealed an in-drop phase separation behavior, resulting in a porous morphology of the final polymer particle. Our experimental results provide a microscopic view of the SHS dissolution process from droplets, and findings may help design SHS extraction processes for particle formation from emulsions.
               
Click one of the above tabs to view related content.