LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitrogen substitution induced lattice contraction in nickel nanoparticles for electrochemical hydrogen evolution from simulated seawater.

Photo from wikipedia

Herein, we demonstrate a facile method for the introduction of nitrogen in the lattices of nickel nanoparticles to form NiNx (x = 0.13, 0.20, 0.27). X-ray absorption spectroscopy reveals the… Click to show full abstract

Herein, we demonstrate a facile method for the introduction of nitrogen in the lattices of nickel nanoparticles to form NiNx (x = 0.13, 0.20, 0.27). X-ray absorption spectroscopy reveals the contraction of the Ni-Ni bond and modulated coordination environment after nitrogen introduction. The NiN0.20 required 87 mV overpotential for -10 mA cm-2 cathodic current density in simulated seawater. The density functional theory calculations revealed favorable EH2Oads and ΔGHads after N-introduction.

Keywords: lattice contraction; induced lattice; nickel nanoparticles; simulated seawater; nitrogen substitution; substitution induced

Journal Title: Chemical communications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.