LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conductance of o-carborane-based wires with different substitution patterns.

Photo from wikipedia

Here, we report the synthesis, structure, and single-molecule conductance of three o-carborane-based molecular wires (ortho-, meta- and para-CN) with multiple conduction channels. The effect of connectivity in target wires compared… Click to show full abstract

Here, we report the synthesis, structure, and single-molecule conductance of three o-carborane-based molecular wires (ortho-, meta- and para-CN) with multiple conduction channels. The effect of connectivity in target wires compared with the corresponding phenyl-centered wires was studied using the scanning tunneling microscope break junction (STM-BJ) technique and theoretical calculations. Interestingly, the three-dimensional structure in o-carborane-based wires can effectively promote the through-space transmission paths or the formation of stable molecular junctions compared to the corresponding phenyl-centered wires. Moreover, the significant conductance difference of o-carborane-based wires was due to the combination of multiple conduction channels and quantum interference. Understanding the effects of different bridging groups and anchor group substitution patterns provides guidelines for designing o-carborane-based multichannel molecular wires.

Keywords: conductance; based wires; carborane based; carborane; substitution patterns

Journal Title: Dalton transactions
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.