Detection of Fe(III) and Cu(II) in water is highly desirable because their abnormal levels can cause serious harm to human health and environmental safety. In this work, a ratiometric luminescence… Click to show full abstract
Detection of Fe(III) and Cu(II) in water is highly desirable because their abnormal levels can cause serious harm to human health and environmental safety. In this work, a ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles was constructed for the detection of Fe3+ and Cu2+ ions. The terbium-silica nanoparticles (named SiO2@Tb) with dual-emission signals were successfully prepared by grafting Tb3+ ions onto trimellitic anhydride (TMA) functionalized silica nanospheres. It can serve as a ratiometric fluorescent probe for the detection of Fe3+ and Cu2+ ions in water with the green emission of Tb3+ ions as a response signal and the blue emission of silica nanospheres as the reference signal. Significantly, an easy-to-differentiate color change for visual detection was also realized. SiO2@Tb shows high sensitivity even in very low concentration regions towards the sensing of Fe3+ and Cu2+ with low detection limits of 0.75 μM and 0.91 μM, respectively. Moreover, the mechanism for the luminescence quenching of SiO2@Tb was systematically investigated, and was attributed to the synergetic effect of the absorption competition quenching (ACQ) mechanism and cation exchange. This study demonstrates that SiO2@Tb can be employed as a promising fluorescent probe for the detection of Fe3+ and Cu2+ ions, and the combination of lanthanide ions with silica nanoparticles is an effective strategy to construct a ratiometric fluorescent sensing platform for the determination of analytes in environmental detection.
               
Click one of the above tabs to view related content.