Solar photocatalysis has emerged as a pollution-free and inexhaustible technique that has been extensively researched in the domains of environmental remediation and energy production. Herein, we have integrated ZnO and… Click to show full abstract
Solar photocatalysis has emerged as a pollution-free and inexhaustible technique that has been extensively researched in the domains of environmental remediation and energy production. Herein, we have integrated ZnO and CdS nanoparticles through Cu as a solid-state electron mediator to design a ZnO-Cu-CdS Z-scheme heterosystem via a sol-gel route and further tested this as a photocatalyst for dye degradation, H2 evolution, and CO2 reduction. Within 60 min of visible light exposure, about 97% of methylene blue (MB) is degraded with a degradation rate constant of 0.042 min-1 for the ZnO0.45Cu0.1CdS0.45 catalyst. The MB degradation with this catalyst is 84, 21, 4.8, and 2 times as high as those of ZnO, CdS, ZnO0.5CdS0.5, and Cu0.1ZnO0.9 catalysts. The ZnO-Cu-CdS catalyst manifests an H2 evolution efficiency of 5579 μmol h-1 g-1, which is 169, 41, 3.9, and 3.5 times as high as those of ZnO, CdS, ZnO0.5CdS0.5, and Cu0.1ZnO0.9 catalysts. Using H2 as a reducing agent, the CO production rate over the ZnO0.45Cu0.1CdS0.45 catalyst reaches 770 μmol h-1 g-1, which is 3 and 1.8 times higher than those of ZnO0.5CdS0.5 and Cu0.1ZnO0.9 catalysts. Besides, the optimal CH4 production rate over ZnO0.45Cu0.1CdS0.45 reaches 890 μmol h-1 g-1. The improved photocatalytic response of the ZnO-Cu-CdS catalyst is assigned to the delayed recombination of photoexcited charge carriers through a Z-scheme charge transport mode, maintaining the photocarriers with strong redox potentials and the dual role of Cu to serve as a conductive bridge to accelerate the charge transfer rate and enhance the light absorption due to its SPR phenomenon. This research offers a promising strategy for developing binary/ternary Z-scheme heterojunction photocatalytic systems for different photocatalytic applications.
               
Click one of the above tabs to view related content.