LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A proficient multivariate approach for iron(II) spin crossover behaviour modelling in the solid state.

Photo from wikipedia

Iron(II) bis-pyrazolilpyridyl (bpp-R) complexes [Fe(bpp-R)2](X)2·solvent, R = substituent and X- = anion, can undergo a spin transition from high (S = 2, HS) to low spin (S = 0, LS),… Click to show full abstract

Iron(II) bis-pyrazolilpyridyl (bpp-R) complexes [Fe(bpp-R)2](X)2·solvent, R = substituent and X- = anion, can undergo a spin transition from high (S = 2, HS) to low spin (S = 0, LS), being spin crossover (SCO) in the solid state. The distortion of the octahedral coordination environment around the metal centre is governed by crystal packing, i.e. the intermolecular interactions among the substituent R of the bpp-R ligands, the anion X-, and the co-crystallized solvent, and this modulates the SCO behaviour. In this work, an innovative multivariate approach, through the combination of the chemometric tools Principal Component Analysis and Partial Least Squares regression, was applied on the coordination bond distances and angles and selected torsional angles of the available HS structures. The obtained results can efficiently model and rationalize the structural data distinguishing between SCO-active and HS-blocked complexes bearing different R groups, X- anions, and co-crystallized solvents and help predict the spin transition temperature T1/2.

Keywords: multivariate approach; iron; spin; solid state; spin crossover

Journal Title: Dalton transactions
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.