LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient electroreduction of CO to acetate using a metal-azolate framework with dicopper active sites.

Photo by clemono from unsplash

Electrochemical reduction of CO to value-added products, especially C2 products, provides a potential approach to achieve carbon neutrality and overcome the energy crisis. Herein, we report a metal-azolate framework (CuBpz)… Click to show full abstract

Electrochemical reduction of CO to value-added products, especially C2 products, provides a potential approach to achieve carbon neutrality and overcome the energy crisis. Herein, we report a metal-azolate framework (CuBpz) with dicopper active sites as an electrocatalyst for the electrochemical CO reduction reaction (eCORR). As a result, CuBpz achieved an impressive faradaic efficiency (FE) of 47.8% for yielding acetate with a current density of -200 mA cm-2, while no obvious degradation was observed over 60 hours of continuous operation at a current density of -200 mA cm-2. Mechanism studies revealed that the dicopper site can promote C-C coupling between two C1 intermediates, thereby being conducive to the generation of the key *CH2COOH intermediate.

Keywords: active sites; metal azolate; efficient electroreduction; dicopper active; azolate framework

Journal Title: Dalton transactions
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.