Electrochemical reduction of CO to value-added products, especially C2 products, provides a potential approach to achieve carbon neutrality and overcome the energy crisis. Herein, we report a metal-azolate framework (CuBpz)… Click to show full abstract
Electrochemical reduction of CO to value-added products, especially C2 products, provides a potential approach to achieve carbon neutrality and overcome the energy crisis. Herein, we report a metal-azolate framework (CuBpz) with dicopper active sites as an electrocatalyst for the electrochemical CO reduction reaction (eCORR). As a result, CuBpz achieved an impressive faradaic efficiency (FE) of 47.8% for yielding acetate with a current density of -200 mA cm-2, while no obvious degradation was observed over 60 hours of continuous operation at a current density of -200 mA cm-2. Mechanism studies revealed that the dicopper site can promote C-C coupling between two C1 intermediates, thereby being conducive to the generation of the key *CH2COOH intermediate.
               
Click one of the above tabs to view related content.