We report the synthesis and structural characterization of a series of heterometallic rings templated via alkylammonium or imidazolium cations. The template and preference of each metal's coordination geometry can control… Click to show full abstract
We report the synthesis and structural characterization of a series of heterometallic rings templated via alkylammonium or imidazolium cations. The template and preference of each metal's coordination geometry can control the structure of heterometallic compounds, leading to octa-, nona-, deca-, dodeca-, and tetradeca-metallic rings. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, magnetometry, and EPR measurements. Magnetic measurements show that the exchange coupling between metal centres is antiferromagnetic. EPR spectroscopy shows that the spectra of {Cr7Zn} and {Cr9Zn} have S = 3/2 ground states, while the spectra of {Cr12Zn2} and {Cr8Zn} are consistent with S = 1 and 2 excited states. The EPR spectra of {(ImidH)-Cr6Zn2}, {(1-MeImH)-Cr8Zn2}, and {(1,2-diMeImH)-Cr8Zn2} include a combination of linkage isomers. The results on these related compounds allow us to examine the transferability of magnetic parameters between compounds.
               
Click one of the above tabs to view related content.