LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weakly aligned Ti3C2Tx MXene liquid crystals: measuring residual dipolar coupling in multiple co-solvent systems.

Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and… Click to show full abstract

Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and low critical concentrations, two-dimensional (2D) liquid crystals (LCs) show the clear advantages of acting as alignment media to measure RDCs. So far, creating multisolvent compatible 2D LC media through a simple and versatile method is still formidably challenging. Herein, we report the rapid creation of aligned media based on the Ti3C2Tx MXene, which self-aligned in multiple co-solvents including CH3OH-H2O, DMSO-H2O, DMF-H2O, and acetone-H2O. We demonstrated the applicability of these aligned media for the RDC measurement of small organic molecules with different polarities and solubilities. Notably, Ti3C2Tx MXene LCs without chemical modification enabled RDC measurements on aromatic molecules. The straightforward preparation of Ti3C2Tx media and its compatibility with multiple solvents will push RDC measurement as a routine methodology for structural elucidation. It may also facilitate the investigation of solvation effects on conformational dynamics.

Keywords: liquid crystals; dipolar coupling; ti3c2tx mxene; residual dipolar; mxene

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.