LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced electromagnetic wave absorption of Fe3O4@MnO2@Ni-Co/C composites derived from Prussian blue analogues.

Photo from wikipedia

Herein, Fe3O4@MnO2@Ni-Co/C composites derived from PBAs were successfully fabricated. Firstly, Ni-Co Prussian blue analogues (Ni-Co PBAs) were used as precursors to derive a carbon layer on their surface by annealing… Click to show full abstract

Herein, Fe3O4@MnO2@Ni-Co/C composites derived from PBAs were successfully fabricated. Firstly, Ni-Co Prussian blue analogues (Ni-Co PBAs) were used as precursors to derive a carbon layer on their surface by annealing treatment and subsequently translated into MnO2@Ni-Co/C nanocubes after hydrothermal reactions. Fe3O4@MnO2@Ni-Co/C composites were finally obtained after depositing Fe3O4 nanoparticles through the annealing process. Their electromagnetic wave (EMW) absorption performance apparently enhanced, thanks to the excellent impedance matching and strong attenuation derived from the synergy between the dielectric loss and the magnetic loss. In particular, the minimum reflection loss (RLmin) of Fe3O4@MnO2@Ni-Co/C reached -41.2 dB with a thickness of 4.0 mm and the effective absorption bandwidth (EAB) reached 7.1 GHz with a thickness of 2.0 mm. Therefore, the results could be significant for synthesizing EMW absorbers with excellent performance, a broad bandwidth, strong absorption, thin thickness and light weight.

Keywords: mno2 composites; mno2; fe3o4 mno2; prussian blue; composites derived; absorption

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.