LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulating the morphology and structures of wet-chemical synthesized L10-FePtMn nanoparticles by applying magnetic fields.

Photo from wikipedia

We report an effective strategy to prepare highly ordered L10-FePt nanoparticles (NPs) by magnetic-field-assisted wet-chemical synthesis. The Mn element with high magnetic susceptibility was chosen for third-element addition, which is… Click to show full abstract

We report an effective strategy to prepare highly ordered L10-FePt nanoparticles (NPs) by magnetic-field-assisted wet-chemical synthesis. The Mn element with high magnetic susceptibility was chosen for third-element addition, which is beneficial to reduce the required magnetic field strength for ordering transition. The evolution of morphology, ordering degree, and magnetic properties of the FePtMn nanomaterials in the synthesis process were systematically investigated. The attachment of spherical FePtMn NPs was facilitated by applying magnetic fields. The particle size was refined only when the magnetic field strength was as high as 6 T. The ordering degree and coercivity of NPs have been improved and reached the peak values when the magnetic field was 2 T, which can be easily achieved by using an ordinary electromagnet. Therefore, this work provides a feasible route for regulating the morphology and structural ordering of L10-phase ternary alloy NPs.

Keywords: l10; applying magnetic; wet chemical; magnetic field; magnetic fields; regulating morphology

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.