LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on molecular mechanisms of CD4 dependency and independency of HIV-1 gp120

Photo from wikipedia

Different HIV-1 strains have different antibody neutralization phenotypes (or CD4-dependencies). However, the molecular mechanisms underlying these differences remain to be elucidated. In this study, we constructed gp120 structural models from… Click to show full abstract

Different HIV-1 strains have different antibody neutralization phenotypes (or CD4-dependencies). However, the molecular mechanisms underlying these differences remain to be elucidated. In this study, we constructed gp120 structural models from the CD4-dependent, neutralization-resistant JR-FL strain and the CD4-independent, neutralization-sensitive R2 strain and carried out several conventional molecular dynamics (MD) simulations and free energy landscape (FEL) constructions. Comparative analyses of the MD simulations and FELs indicated that R2 gp120 had higher global structural flexibility and greater conformational diversity than JR-FL gp120. This provides the preconditions for R2 gp120 to adopt a more open conformation than JR-FL gp120. Essential dynamics (ED) analysis showed that the collective motions of R2 gp120 tend towards an open state while those of JR-FL gp120 tend to retain a closed state. Based on conformational selection theory, R2 gp120's more readily sampled open state makes it more sensitive to neutralizing antibodies (or more CD4-independent) than JR-FL gp120, which may explain why the HIV-1 R2 and JR-FL strains show CD4-independent and -dependent phenotypes, respectively. Our study provides thermodynamic and kinetic insights into the CD4-dependent and -independent molecular mechanisms of HIV-1 gp120 and helps shed light on HIV-1 immune evasion.

Keywords: hiv; study molecular; molecular mechanisms; gp120; cd4 independent; hiv gp120

Journal Title: RSC Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.