LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoluminescence behavior of rare earth doped self-activated phosphors (i.e. niobate and vanadate) and their applications

Photo from wikipedia

In the present study, the photoluminescence behaviors of rare earth doped self-activated phosphors are discussed briefly. Different techniques were used to develop these phosphor samples. We prepared pure and rare… Click to show full abstract

In the present study, the photoluminescence behaviors of rare earth doped self-activated phosphors are discussed briefly. Different techniques were used to develop these phosphor samples. We prepared pure and rare earth doped phosphor samples to look for their various applications. The structural confirmations and surface morphologies were performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements, respectively. The upconversion (UC) phenomenon was investigated in Tm3+/Yb3+ and Ho3+/Yb3+ co-doped niobate and vanadate based phosphors, which gave intense blue/NIR and green/red emissions with a 980 nm diode laser as an excitation source. Pure niobate and vanadate phosphor materials are self-activated hosts which give broad blue emission under UV excitation. Upon UV excitation, intense broad blue emission along with sharp emissions due to Tm3+ and Ho3+ ions are observed via energy transfer between niobate/vanadate and rare earth ions. These self-activated hosts show prominent downshifting (DS) behavior. Broad band quantum cutting (QC) was observed in these self-activated hosts, in which a blue emitting photon is converted into two NIR photons by co-doping Yb3+ ions in it. The multimodal (upconversion, downshifting and quantum cutting) behaviors of these phosphors make them very promising in various applications, such as spectral converters to enhance the efficiency of a c-Si solar cell, security ink and color tunable materials.

Keywords: self activated; earth doped; rare earth; niobate vanadate

Journal Title: RSC Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.