The FeMoS2 catalyst for activating peroxymonosulfate (PMS) is a promising pathway for removing organic pollutants in wastewater, however, the dominant FeS2 phases and sulfur (S) vacancies in it are little… Click to show full abstract
The FeMoS2 catalyst for activating peroxymonosulfate (PMS) is a promising pathway for removing organic pollutants in wastewater, however, the dominant FeS2 phases and sulfur (S) vacancies in it are little involved. Herein, for the first time, novel bimetallic FeMoS2 microparticles were synthesized by a simple method and then applied for PMS activation for degrading organic pollutants. The catalysts were characterized by several techniques, including X-ray diffraction and X-ray photoelectron spectroscopies. The results revealed that new FeMoS2 microparticles containing S vacancies in the main FeS2 phases were obtained. FeS2 and S vacancies were found to play important roles for activating PMS by radical and nonradical pathways. More Fe2+ and Mo4+ were formed in the presence of S vacancies, which offered a new strategy for exploring novel heterogeneous catalysts in the activation of PMS for environmental remediation.
               
Click one of the above tabs to view related content.