In this study, a novel glucose-assisted redox hydrothermal method has been presented to prepare an Mn-doped CeO2 catalyst (denoted as Mn-CeO2-R) for the first time. The obtained catalyst contains uniform… Click to show full abstract
In this study, a novel glucose-assisted redox hydrothermal method has been presented to prepare an Mn-doped CeO2 catalyst (denoted as Mn-CeO2-R) for the first time. The obtained catalyst contains uniform nanoparticles with a small crystallite size, a large mesopore volume, and rich active surface oxygen species. Such features collectively contribute to improving the catalytic activity for the total catalytic oxidation of methanol (CH3OH) and formaldehyde (HCHO). Interestingly, the large mesopore volume feature of the Mn-CeO2-R samples could be considered an essential factor to eliminate the diffusion limit, favoring the total oxidation of toluene (C7H8) at high conversion. Therefore, the Mn-CeO2-R catalyst outperforms both bare CeO2 and conventional Mn-CeO2 catalysts with T90 values of 150 °C and 178 °C for HCHO and CH3OH, respectively, and 315 °C for C7H8, at a high GHSV of 60 000 mL g−1 h−1. Such robust catalytic activities signify a potential utilization of Mn-CeO2-R for the catalytic oxidation of volatile organic compounds (VOCs).
               
Click one of the above tabs to view related content.