LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved redox synthesis of Mn–Co bimetallic oxide catalysts using citric acid and their toluene oxidation activity

Photo by unstable_affliction from unsplash

In this work, high-activity cobalt-doped α-MnO2 hybrid materials were prepared using the citric acid oxidation reduction (CR) technique and applied to the catalytic oxidation of toluene. Compared to the traditional… Click to show full abstract

In this work, high-activity cobalt-doped α-MnO2 hybrid materials were prepared using the citric acid oxidation reduction (CR) technique and applied to the catalytic oxidation of toluene. Compared to the traditional processes such as sol–gel, co-precipitation and our previous reported self-driving combustion process, the microstructure of Mn–Co bimetallic oxide catalyst is easier to regulated as well as the dispersion of active phase. Moreover, some accurate characterization techniques such as XRD, H2-TPR, O2-TPD, SEM, TEM, and XPS have been employed, to further illustrate the intrinsic factors for the efficient catalytic oxidation of toluene. It was ultimately found that the CR-Mn10Co1 prepared by citric acid oxidation reduction method could catalyze the oxidation of 90% of toluene at 232 °C, and its excellent catalytic performance was significantly related to its large specific surface area, excellent oxidation reduction ability, and abundant Mn3+ species and oxygen vacancy content. Therefore, citric acid oxidation reduction (CR) provides a convenient and effective route for the efficient and low-cost synthesis of Mn–Co catalysts for removing VOCs.

Keywords: oxidation reduction; oxidation; bimetallic oxide; using citric; activity; citric acid

Journal Title: RSC Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.