LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mass calibrants for positive chemical ionization-high resolution mass spectrometry (CI-HRMS) for the identification of unknown compounds using accurate mass measurements

Photo by ldxcreative from unsplash

Gas Chromatography-Electron Ionization-Mass Spectrometry (GC-EI-MS) is still the most routinely performed method for metabolite profiling as compared to other hyphenated techniques. But when it comes to identification of unknown compounds,… Click to show full abstract

Gas Chromatography-Electron Ionization-Mass Spectrometry (GC-EI-MS) is still the most routinely performed method for metabolite profiling as compared to other hyphenated techniques. But when it comes to identification of unknown compounds, information on the molecular weight is not readily available because the molecular ion is not always found with electron ionization (EI). Thus, the use of chemical ionization (CI) is envisaged that commonly produces the molecular ion; in combination with accurate mass measurement, this technique would further allow for calculation of sum formulas of those compounds. However, for proper accuracy of analysis, a mass calibrant is needed. We set out to find a commercially available reference material with mass peaks that would qualify the substance as mass calibrant under CI conditions. Six commercially available mass calibrants, FC 43, PFK, Ultramark 1621, Ultramark 3200F, Triton X-100, and PEG 1000, were tested under CI conditions to understand their fragmentation behavior. Our findings indicate that Ultramark 1621 and PFK best fit the expectations of a mass calibrant for HRMS analysis whereby PFK provided a fragmentation pattern similar to EI outcomes thus enabling the use of mass reference tables commonly provided within commercial mass spectrometers. On the other hand, Ultramark 1621 is a mixture of fluorinated phosphazines that shows stable fragment intensities.

Keywords: ionization; chemical ionization; mass spectrometry; identification unknown; mass; unknown compounds

Journal Title: RSC Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.