LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flower ball cathode assembled from Cu doped Co3S4/Ni3S2 ultrathin nanosheets in a photocatalytic fuel cell for efficient photoelectrochemical rifampicin purification and simultaneous electricity generation based on a CuO QDs/TiO2/WO3 photoanode

Photo by kaitlynraeann from unsplash

Herein, an efficient CuO QDs/TiO2/WO3 photoanode and a Cu doped Co3S4/Ni3S2 cathode were successfully synthesized. The optimized CuO QDs/TiO2/WO3 photoanode achieved a photocurrent density of 1.93 mA cm−2 at 1.23… Click to show full abstract

Herein, an efficient CuO QDs/TiO2/WO3 photoanode and a Cu doped Co3S4/Ni3S2 cathode were successfully synthesized. The optimized CuO QDs/TiO2/WO3 photoanode achieved a photocurrent density of 1.93 mA cm−2 at 1.23 vs. RHE, which was 2.27 times that of a WO3 photoanode. The CuO QDs/TiO2/WO3-buried junction silicon (BJS) photoanode was coupled with the Cu doped Co3S4/Ni3S2 cathode to construct a novel photocatalytic fuel cell (PFC) system. The as-established PFC system showed a high rifampicin (RFP) removal ratio of 93.4% after 90 min and maximum power output of 0.50 mW cm−2. Quenching tests and EPR spectra demonstrated that ˙OH, ˙O2− and 1O2 were the main reactive oxygen species in the system. This work provides a possibility to construct a more efficient PFC system for environmental protection and energy recovery in the future.

Keywords: wo3 photoanode; tio2 wo3; cuo qds; qds tio2

Journal Title: RSC Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.