LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rational molecular and doping strategies to obtain organic polymers with ultralong RTP

Photo by dkoi from unsplash

Organic-doped polymers and room-temperature phosphorescence (RTP) mechanisms have been widely reported. However, RTP lifetimes >3 s are rare and RTP-enhancing strategies are incompletely understood. Herein, we demonstrate a rational molecular… Click to show full abstract

Organic-doped polymers and room-temperature phosphorescence (RTP) mechanisms have been widely reported. However, RTP lifetimes >3 s are rare and RTP-enhancing strategies are incompletely understood. Herein, we demonstrate a rational molecular doping strategy to obtain ultralong-lived, yet bright RTP polymers. The nā€“Ļ€* transitions of boron- and nitrogen-containing heterocyclic compounds can promote a triplet-state population, and the grafting of boronic acid onto polyvinyl alcohol can inhibit molecular thermal deactivation. However, excellent RTP properties were achieved by grafting 1ā€“0.1% (N-phenylcarbazol-2-yl)-boronic acid rather than (2-/3-/4-(carbazol-9-yl)phenyl)boronic acids to afford record-breaking ultralong RTP lifetimes up to 3.517ā€“4.444 s. These results showed that regulation of the interacting position between the dopant and matrix molecules to directly confine the triplet chromophore could more effectively stabilize triplet excitons, disclosing a rational molecular-doping strategy for achieving polymers with ultralong RTP. Based on the energy-donor function of blue RTP, an ultralong red fluorescent afterglow was demonstrated by co-doping with an organic dye.

Keywords: ultralong rtp; rational molecular; rtp; polymers ultralong; molecular doping; doping strategies

Journal Title: Chemical Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.