LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of highly stable and ultrasmooth chemically grafted thin films of chitosan.

Photo from wikipedia

Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer… Click to show full abstract

Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 μm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.

Keywords: chemically grafted; highly stable; preparation highly; ultrasmooth chemically; grafted thin; stable ultrasmooth

Journal Title: Soft matter
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.