High internal phase emulsions stabilized with colloidal particles (Pickering HIPEs) have recently been studied intensively because of their great stability achieved by the irreversible adsorption of particles onto the oil-water… Click to show full abstract
High internal phase emulsions stabilized with colloidal particles (Pickering HIPEs) have recently been studied intensively because of their great stability achieved by the irreversible adsorption of particles onto the oil-water interface and their usage as a template for synthesizing porous polymeric materials, called PolyHIPEs. In most cases, Pickering HIPEs with microscale droplets ranging from tens of micrometers to hundreds of micrometers have been successfully achieved, but the stabilization of Pickering HIPEs with millimeter-sized droplets is rarely reported. In this study, we report for the first time that, by using shape-anisotropic silica particle aggregates as a stabilizer, successful stabilization of Pickering HIPEs with millimeter-sized droplets can be achieved, and the size of droplets can be simply controlled. Additionally, we demonstrate that stable PolyHIPEs with large pores can be readily converted to PolyHIPEs with millimeter-scale pores, which have advantages in absorbent materials and biomedical engineering applications.
               
Click one of the above tabs to view related content.