LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

H2S-removing UiO-66 MOFs for sensitized antibacterial therapy

Photo by ngbates from unsplash

Antibiotic tolerance is implicated in difficult-to-treat infections and the development and spread of antibiotic resistance. The high storage capacities and excellent biocompatibilities of UiO-66-based metal-organic frameworks (MOFs) have made them… Click to show full abstract

Antibiotic tolerance is implicated in difficult-to-treat infections and the development and spread of antibiotic resistance. The high storage capacities and excellent biocompatibilities of UiO-66-based metal-organic frameworks (MOFs) have made them emerging candidates as drug-delivery vectors. In view of hydrogen sulfide (H2S) having been associated with the development of intrinsic resistance to antibacterial agents, we designed a strategy to potentiate existing antibiotics by eliminating bacterial endogenous H2S. We efficiently fabricated an antibiotic enhancer Gm@UiO-66-MA to remove bacterial H2S and sensitize an antibacterial by modifying UiO-66-NH2 with maleic anhydride (MA) and then loading it with gentamicin (Gm). UiO-66-MA achieved the removal of bacterial endogenous H2S and the destruction of bacterial biofilm by selectively undergoing Michael addition with H2S. Moreover, Gm@UiO-66-MA further enhanced the susceptibility of tolerant E. coli to Gm after reducing bacterial intracellular H2S levels. An in vivo skin wound healing experiment confirmed that Gm@UiO-66-MA could greatly reduce the risk of bacterial reinfection and accelerate wound healing. Overall, Gm@UiO-66-MA offers a promising antibiotic sensitizer for minimizing bacterial resistance and a therapeutic strategy for tolerant bacteria-related refractory infections.

Keywords: uio mofs; removing uio; sensitized antibacterial; h2s; h2s removing; mofs sensitized

Journal Title: Journal of Materials Chemistry B
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.