LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TGF-β prevents the denervation-induced reduction of bone formation and promotes the bone regeneration through inhibiting ubiquitin-proteasome pathway

Photo by otto_norin from unsplash

Background: Transforming growth factor beta (TGF-β) can stimulate osteogenesis as a multifunctional protein. The present study was to explore if TGF-β can prevent denervation-induced reduction of bone formation. Materials &… Click to show full abstract

Background: Transforming growth factor beta (TGF-β) can stimulate osteogenesis as a multifunctional protein. The present study was to explore if TGF-β can prevent denervation-induced reduction of bone formation. Materials & methods: The 6-week-old male mice were treated with recombinant human TGF-β1 (rhTGF-β1). Bone formation, endochondral bone growth rates, and gene expression of osteoblast markers were measured in the skeletal tissue by real-time PCR. Results: RhTGF-β1 treatment prevented the denervation-induced decrease in bone formation rates, endochondral growth, and expression of Cbfa1/Runx2 (runt-related transcription factor 2), Ostecalcin (OC), and ColIA1. TGF-β1 partially inhibited the denervation-induced ubiquitination of Cbfa1/Runx2 in mouse cancellous bones via ubiquitin-proteasome pathway. Conclusion: TGF-β prevents denervation-induced reduction of bone formation and promotes the bone regeneration through inhibiting ubiquitin-proteasome pathway at least partially.

Keywords: tgf; bone; denervation induced; bone formation

Journal Title: Bioscience Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.