Abstract Circular RNAs (circRNAs) are a novel class of non-coding RNAs that are characterized by a covalently closed circular structure. They have been widely found in Populus euphratica Oliv. heteromorphic… Click to show full abstract
Abstract Circular RNAs (circRNAs) are a novel class of non-coding RNAs that are characterized by a covalently closed circular structure. They have been widely found in Populus euphratica Oliv. heteromorphic leaves (P. hl). To study the role of circRNAs related to transcription factors (TFs) in the morphogenesis of P. hl, the expression profiles of circRNAs in linear, lanceolate, ovate, and broad-ovate leaves of P. euphratica were elucidated by strand-specific sequencing. We identified and characterized 22 circRNAs related to TFs in P. hl at the four developmental stages. Using the competing endogenous RNAs hypothesis as a guide, we constructed circRNA–miRNA–TF mRNA regulatory networks, which indicated that circRNAs antagonized microRNAs (miRNAs), thereby influencing the expression of the miRNA target genes and playing a significant role in transcriptional regulation. Gene ontology annotation of the target TF genes predicted that these circRNAs were associated mainly with the regulation of leaf development, leaf morphogenesis, signal transduction, and response to abiotic stress. These findings implied that the circRNAs affected the size and number of cells in P. hl by regulating the expression of TF mRNAs. Our results provide a basis for further studies of leaf development in poplar trees.
               
Click one of the above tabs to view related content.