Abstract Precise genome editing with directed base insertion or targeted point mutations can be achieved by CRISPR/Cas9-mediated homology-directed repair (HDR) and is of great significance in clinical disease therapy. However,… Click to show full abstract
Abstract Precise genome editing with directed base insertion or targeted point mutations can be achieved by CRISPR/Cas9-mediated homology-directed repair (HDR) and is of great significance in clinical disease therapy. However, HDR efficiency, compared with non-homologous end-joining (NHEJ), is inherently low. To enhance HDR, enabling the insertion of precise genetic modifications, we compared two strategies during surrogate reporter assays in mouse N2A cells: the suppression of DNA ligase IV, a key molecule in NHEJ, using the CasRx (Ruminococcus flavefaciens Cas13d) system, and co-expression of Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF52 proteins. We found that suppression of DNA ligase IV promotes HDR efficiency by 1.4-fold. When co-expressed with the Cas9 system, ORF52 improved HDR efficiency by up to 2.1-fold. In addition, we used ORF52 co-expression to modify the ACTB and Tubb3 genes of mouse N2A and E14 cells, which further increased HDR efficiency by approximately two- to four-fold. In conclusion, our data suggest that ORF52 co-expression is effective for enhancing CRISPR/Cas9-mediated HDR, which may be useful for future studies involving precise genome editing.
               
Click one of the above tabs to view related content.