LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ERRα activates SHMT2 transcription to enhance the resistance of breast cancer to lapatinib via modulating the mitochondrial metabolic adaption

Photo from wikipedia

Abstract Lapatinib, a tyrosine kinase inhibitor, can initially benefit the patients with breast tumors but fails in later treatment due to the inevitable development of drug resistance. Estrogen-related receptor α… Click to show full abstract

Abstract Lapatinib, a tyrosine kinase inhibitor, can initially benefit the patients with breast tumors but fails in later treatment due to the inevitable development of drug resistance. Estrogen-related receptor α (ERRα) modulates the metabolic adaptations in lapatinib-resistant cancer cells; however, the underlying mechanism remains unclear. ERRα was predicted to bind to the serine hydroxymethyltransferase 2 (SHMT2) transcription initiation site in the ER- and HER2-positive cell line BT-474; thus, we hypothesize that ERRα might modulate the resistance of breast cancer to lapatinib via regulating SHMT2. In the present study, we revealed that 2.5 and 5 µM lapatinib treatment could significantly decrease the expression and protein levels of ERRα and SHMT2; ERRα and SHMT2 expression and protein levels were significantly up-regulated in breast cancer cells, in particularly in breast cancer cells with resistance to lapatinib. ERRα knockdown restored the inhibitory effects of lapatinib on the BT-474R cell viability and migration; in the meantime, ERRα knockdown rescued the production of reactive oxygen species (ROS) whereas decreased the ratio of glutathione (GSH)/oxidized glutathione (GSSG) upon lapatinib treatment. Via targeting SHMT2 promoter region, ERRα activated the transcription of SHMT2. The effects of ERRα knockdown on BT-474R cells under lapatinib treatment could be significantly reversed by SHMT2 overexpression. In conclusion, ERRα knockdown suppresses the detoxification and the mitochondrial metabolic adaption in breast cancer resistant to lapatinib; ERRα activates SHMT2 transcription via targeting its promoter region, therefore enhancing breast cancer resistance to lapatinib.

Keywords: err; cancer; transcription; resistance; breast cancer

Journal Title: Bioscience Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.