LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eukaryotic-like phosphoprotein phosphatase (PPP) enzyme evolution: interactions with environmental toxins and regulatory proteins

Photo by karsten_wuerth from unsplash

Abstract Phosphoprotein phosphatases (PPPs) are a ubiquitous class of enzymes which dephosphorylate serine and threonine residues on substrate proteins involved in a wide variety of cellular processes. The active site… Click to show full abstract

Abstract Phosphoprotein phosphatases (PPPs) are a ubiquitous class of enzymes which dephosphorylate serine and threonine residues on substrate proteins involved in a wide variety of cellular processes. The active site of PPP enzymes are highly conserved with key residues coordinating the substrate phosphoryl group (the two R-clamp) and two metal ions necessary for catalysis. Because of the diverse number of roles that these enzymes play it is no surprise that they are highly regulated in the cell, often accomplished by binding regulatory subunits. These regulatory subunits are able to dictate substrate specificity, localization, and activity of the bound catalytic subunit. Eukaryotic PPP subtypes have been previously shown to manifest varying degrees of sensitivity to environmental toxins. We present here an evolutionary model which now rationalizes this data. Our re-examination of published structural evidence reveals that Eukaryotic PPP toxin-binding residues also interact with substrate binding residues (the two R-clamp) and ancient regulatory proteins. Such functional interactions could have stabilized PPP sequence early in Eukaryotic evolution, providing a stable target which was co-opted by toxins and their producer organisms.

Keywords: environmental toxins; eukaryotic like; ppp; regulatory proteins; like phosphoprotein; evolution

Journal Title: Bioscience Reports
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.