Cigarette smoking (CS) is known to reduce body weight and this often masks its real effect on insulin action. The present study tested the hypothesis that CS can divert lipid… Click to show full abstract
Cigarette smoking (CS) is known to reduce body weight and this often masks its real effect on insulin action. The present study tested the hypothesis that CS can divert lipid deposition to muscles to offset the supposed benefit of reduced body weight gain on insulin signalling in this major site for glucose tolerance (or insulin action). The study was conducted in mice exposed to chronic CS followed by either a chow (CH) diet or a high-fat (HF) diet. CS increased triglyceride (TG) levels in both plasma and muscle despite a reduced body weight gain and adiposity. CS led to glucose intolerance in CH-fed mice and they retained the glucose intolerance that was induced by the HF diet. In adipose tissue, CS increased macrophage infiltration and the mRNA expression of TNFα but suppressed the protein expression of adipose triglyceride lipase and PPARγ. While CS increased hormone-sensitive lipase and suppressed the mRNA expression of leptin, these effects were blunted in HF-fed mice. These results imply that CS impairs insulin signalling in skeletal muscle via accumulated intramuscular lipids from lipolysis and lipodystrophy of adipose tissues. This may explain why smokers may not benefit from insulin sensitising effects of reduced body weight gain.
               
Click one of the above tabs to view related content.