Many bacterial infections in humans and animals are caused by bacteria residing in biofilms, complex communities of attached organisms embedded in an extracellular matrix. One of the key properties of… Click to show full abstract
Many bacterial infections in humans and animals are caused by bacteria residing in biofilms, complex communities of attached organisms embedded in an extracellular matrix. One of the key properties of microorganisms residing in a biofilm is decreased susceptibility towards antimicrobial agents. This decreased susceptibility, together with conventional mechanisms leading to antimicrobial resistance, makes biofilm-related infections increasingly difficult to treat and alternative antibiofilm strategies are urgently required. In this review, we present three such strategies to combat biofilm-related infections with the important human pathogen Staphylococcus aureus: (i) targeting the bacterial communication system with quorum sensing (QS) inhibitors, (ii) a 'Trojan Horse' strategy to disturb iron metabolism by using gallium-based therapeutics and (iii) the use of 'non-antibiotics' with antibiofilm activity identified through screening of repurposing libraries.
               
Click one of the above tabs to view related content.