PURPOSE Common clinical application of auditory brainstem response (ABR) testing is limited to 0.25-4 kHz. Prior research has demonstrated associations between ABR and behavioral thresholds for tone burst stimuli >… Click to show full abstract
PURPOSE Common clinical application of auditory brainstem response (ABR) testing is limited to 0.25-4 kHz. Prior research has demonstrated associations between ABR and behavioral thresholds for tone burst stimuli > 4 kHz in adults, but there are no comparable data for children. The ability to predict behavioral thresholds > 4 kHz clinically based on the ABR would provide valuable audiologic information for individuals who are unable to provide behavioral thresholds. This study included children with hearing loss and children with normal hearing to determine the association between ABR and behavioral thresholds at 6 and 8 kHz. METHOD ABR and behavioral thresholds were obtained for children ages 4.7-16.7 years (M = 10.5, SD = 3.4) with sensorineural hearing loss (n = 24) or normal hearing sensitivity (n = 16) and for adults ages 18.4-54.4 years (M = 32.7, SD = 10.4) with sensorineural hearing loss (n = 13) or normal hearing sensitivity (n = 11). Thresholds obtained for 6 and 8 kHz using ABR and conventional audiometry were compared. RESULTS Differences between ABR and behavioral thresholds averaged 5-6 dB for both children and adults for both test frequencies, with differences of ≤ 20 dB in all instances. Linear mixed modeling for data from participants with hearing loss suggested that ABR threshold is a good predictor of behavioral threshold at 6 and 8 kHz for both children and adults. Test specificity was 100%; no participants with behavioral thresholds ≤ 20 dB HL had ABR thresholds > 25 dB nHL. CONCLUSIONS Initial evidence suggests that ABR testing at 6 and 8 kHz is reliable for estimating behavioral threshold in listeners with hearing loss and accurately identifies normal hearing sensitivity. The results of this study contribute to efforts to improve outcomes for vulnerable populations by reducing barriers to clinical implementation of ABR testing at > 4 kHz.
               
Click one of the above tabs to view related content.