LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2‐D DOA Estimation Using Off‐Grid Sparse Learning via Iterative Minimization with L‐Parallel Coprime Array

Photo from wikipedia

An L-parallel coprime array is designed and an Off-grid sparse learning via iterative minimization (OGSLIM) algorithm is proposed in order to improve the performance of Two-dimensional direction-of-arrival (2-D DOA) estimation.… Click to show full abstract

An L-parallel coprime array is designed and an Off-grid sparse learning via iterative minimization (OGSLIM) algorithm is proposed in order to improve the performance of Two-dimensional direction-of-arrival (2-D DOA) estimation. The L-parallel coprime array consists of two parts, one is a parallel coprime array and the other one is a linear coprime array perpendicular to the parallel coprime array. The OGSLIM algorithm is based on sparse Bayesian framework and can learn the offi-grid parameter. Theory analysis and simulation results demonstrate that 2-D DOA estimation using OGSLIM algorithm with L-parallel coprime array can lead to higher estimation accuracy and resolution, it also fits to the underdetermined signals and correlated signals.

Keywords: parallel coprime; estimation; coprime; coprime array

Journal Title: Chinese Journal of Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.