LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrostatically driven long-microbeams for low frequency applications

Photo from academic.microsoft.com

This Letter presents the design, fabrication and characterisation of an array of electrostatically actuated clamped-clamped microbeams. A large bottom actuation electrode and long beams with lengths ranging from 1 to… Click to show full abstract

This Letter presents the design, fabrication and characterisation of an array of electrostatically actuated clamped-clamped microbeams. A large bottom actuation electrode and long beams with lengths ranging from 1 to 3.4 mm are the major features of the present device. The novelty of this Letter lies in the realisation of suspended and undeformed microstructures by controlling the process-induced stress during the fabrication process. This has been achieved by compensating the influence of the compressive and tensile stress components of the different deposited layers, resulting in ultralong beams with a relatively straight mechanical profile and an aspect ratio of ~1:3400 of vertical deflection to the beam length. For the first time, ultralong microbeams of tantalum have been actuated electrostatically with AC and DC driving voltages to drive them into resonance and characterise their resonant frequencies. The lowest resonant frequency of 1.4 kHz is obtained for a 3.4 mm-long beam. The shift of the resonant frequency due to the effect of different DC biasing has been investigated experimentally. A spring softening effect has been induced through electrostatic tuning. A downward shift in the resonant frequency to 35,000 ppm for DC bias voltages increasing from 1 to 5 V has been demonstrated.

Keywords: long microbeams; frequency; driven long; resonant frequency; electrostatically driven; microbeams low

Journal Title: Electronics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.