LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis

Photo from wikipedia

In this Letter, a robust technique is presented to detect and classify different electrocardiogram (ECG) noises including baseline wander (BW), muscle artefact (MA), power line interference (PLI) and additive white… Click to show full abstract

In this Letter, a robust technique is presented to detect and classify different electrocardiogram (ECG) noises including baseline wander (BW), muscle artefact (MA), power line interference (PLI) and additive white Gaussian noise (AWGN) based on signal decomposition on mixed codebooks. These codebooks employ temporal and spectral-bound waveforms which provide sparse representation of ECG signals and can extract ECG local waves as well as ECG noises including BW, PLI, MA and AWGN simultaneously. Further, different statistical approaches and temporal features are applied on decomposed signals for detecting the presence of the above mentioned noises. The accuracy and robustness of the proposed technique are evaluated using a large set of noise-free and noisy ECG signals taken from the Massachusetts Institute of Technology-Boston's Beth Israel Hospital (MIT-BIH) arrhythmia database, MIT-BIH polysmnographic database and Fantasia database. It is shown from the results that the proposed technique achieves an average detection accuracy of above 99% in detecting all kinds of ECG noises. Furthermore, average results show that the technique can achieve an average sensitivity of 98.55%, positive productivity of 98.6% and classification accuracy of 97.19% for ECG signals taken from all three databases.

Keywords: classification; ecg; ecg signals; decomposition mixed; ecg noises

Journal Title: Healthcare Technology Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.