The aim of this study is to design a robust output-based control to regulate the output for a class of linear systems with input saturation and affected by parameter uncertainties… Click to show full abstract
The aim of this study is to design a robust output-based control to regulate the output for a class of linear systems with input saturation and affected by parameter uncertainties and external disturbances. The proposed robust control approach is composed of a homogeneous observer and a linear control law. The design and convergence analysis of the homogeneous observer is based on the implicit Lyapunov function theorem guaranteeing the finite-time convergence of the state estimation error to a neighbourhood of the origin. The linear control law, that uses the estimated states and takes into account the saturated input constraint, is designed based on the attractive ellipsoid method and a barrier Lyapunov function approach. The synthesis of the robust-output based control is given in terms of linear matrix inequalities. Simulation results are presented to illustrate the feasibility of the proposed robust control approach.
               
Click one of the above tabs to view related content.