LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radial position control for magnetically suspended high‐speed flywheel energy storage system with inverse system method and extended 2‐DOF PID controller

Photo from wikipedia

To achieve high-precision position control for the active magnetic bearing high-speed flywheel rotor system (AMB-HFRS), a novel control strategy based on inverse system method and extended two-degree-of-freedom (2-DOF) proportional–integral–derivative (PID)… Click to show full abstract

To achieve high-precision position control for the active magnetic bearing high-speed flywheel rotor system (AMB-HFRS), a novel control strategy based on inverse system method and extended two-degree-of-freedom (2-DOF) proportional–integral–derivative (PID) controller is proposed in this study. First, the inverse system method is employed to decouple the AMB flywheel rotor system with strong non-linear and coupling, into four independent subsystems. Subsequently, extended 2-DOF PID controllers are used to regulate the decoupled subsystems, to obtain good performances of disturbance rejection and tracking simultaneously. In the extended 2-DOF PID controller, a differential signal is produced by a velocity observer to improve the ability of against noise. Finally, the characteristics of stability, tracking, disturbance rejection and robustness of the control strategy proposed are analysed in theory, and its ability and effectiveness to control the radial position of the AMB-HFRS are further studied by simulations and experiments. It is shown that the control strategy proposed can keep the AMB-HFRS suspending stably from static state to the speed of 24,000 rpm, has the advantages of good tracking, high disturbance rejection, strong robustness and good ability of against noise.

Keywords: system; system method; extended dof; control; pid controller; inverse system

Journal Title: IET Electric Power Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.