This study presents a review of prognostic methods applied to automotive proton exchange membrane fuel cell (PEMFC). PEMFC durability is strongly affected when it is subjected to automotive load cycling… Click to show full abstract
This study presents a review of prognostic methods applied to automotive proton exchange membrane fuel cell (PEMFC). PEMFC durability is strongly affected when it is subjected to automotive load cycling (ALC). ALC is normally composed of four operation modes such as start-up, idle, transient high-current demand and shutdown. All of these operation modes drastically change the internal variables of the system like temperature, pressure, relative humidity etc. causing degradation of the fuel cell components in a short time. Prognostic methods could be a possible solution to tackle the PEMFC's low durability issue because they allow predicting the remaining useful life of the system in order to apply preventive maintenance plans. Therefore, the objective of this study is to review the prognostic techniques applied to PEMFC under ALC. In the first part of this study, a summary of PEMFC degradation mechanisms caused by ALC is realised based on literature review. In the second part, the prognostic methods review for automotive PEMFCs is carried out and a general synthesis and future challenges are given in the third part of the study.
               
Click one of the above tabs to view related content.