LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding drivers' route choice behaviours in the urban network with machine learning models

Photo from wikipedia

Drivers' route choice model is essential in transportation software such as navigation, fleet management, and simulation, where the random utility models (RUM) have dominated for years. The authors investigate here… Click to show full abstract

Drivers' route choice model is essential in transportation software such as navigation, fleet management, and simulation, where the random utility models (RUM) have dominated for years. The authors investigate here whether machine learning (ML) models could be applied into this field, and whether these approaches outperform the traditional models in goodness-of-fit and prediction. The application framework and data structure are proposed, where the challenging problems lie in: (i) to pool data from multiple origin-destination pairs; and (ii) to interpret results for behaviour analysis. All RUM and ML models are applied in a real network. Results suggest that the random forest, one of the ML models, has satisfying performances with acceptable computation time, making it suitable for large network and real-time analysis. This study shows that the ML models can be adopted for behaviour analysis, such as to prioritise the importance of variables, compute the elasticity, and forecast for scenarios. Future directions on combining the RUM and ML models are discussed.

Keywords: machine learning; network; learning models; drivers route; route choice

Journal Title: Iet Intelligent Transport Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.