LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of silver nanoparticles coated with anti-HER2 on irradiation efficiency of SKBR3 breast cancer cells.

Photo from wikipedia

Breast cancer is the second cause of death in the world. Ionising radiation is a potent mutagen that can cause DNA damage, chromosomes breakage, and cell death. In the present… Click to show full abstract

Breast cancer is the second cause of death in the world. Ionising radiation is a potent mutagen that can cause DNA damage, chromosomes breakage, and cell death. In the present study, radiotherapy and nanoparticle-antibodies (ABs) have been combined to enhance the efficacy of cancer cell treatment. Silver nanoparticles (SNP) were synthesised, coated with anti-HER2, and then characterised with different techniques such as X-ray diffraction, dynamic light scattering, transmission electron microscopy, Fourier transform infrared, and UV-Vis spectroscopy. SKBR3 cells were irradiated with cobalt-60 in the presence of nanoparticle-AB as the drug. Cell viability was measured using the diphenyltetrazolium bromide assay, and the cellular status was assessed by Raman spectroscopy. Irradiation considerably decreased cell viability proportionate to the dose increase and post-irradiation time. The surface-enhanced Raman spectroscopy increased the signal in the presence of SNP. Increasing the dose to 2 Gy increased the irradiation resistance, and higher dose increases (4 and 6 Gy) enhanced the irradiation sensitivity. Moreover, the cellular changes induced by irradiation in the presence of the drug were stable after 48 h. The authors results introduced the combination of the drug with radiation as an effective treatment for cancer and Raman spectroscopy as a suitable tool to diagnose effective irradiation doses.

Keywords: spectroscopy; breast cancer; coated anti; silver nanoparticles; irradiation

Journal Title: IET nanobiotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.