Fault-tolerant capability greatly promoted the application of multiphase machines on safety-critical occasions, and fault-tolerant control strategies are required to suppress the torque ripples. Based on the generalised symmetrical components (SCs)… Click to show full abstract
Fault-tolerant capability greatly promoted the application of multiphase machines on safety-critical occasions, and fault-tolerant control strategies are required to suppress the torque ripples. Based on the generalised symmetrical components (SCs) theory, a general expression of the independent SCs is derived during the fault-tolerant operation of symmetrical multiphase machines in this study, and coefficients of the four basic rotating components in the general expressions are calculated for specific open-circuit conditions. Then the bidirectional rotating proportional–integral controllers are designed to control all the rotating components in each SC. Considering control loops for all the independent SCs, an enhanced rotor field-oriented control fault-tolerant strategy is proposed for symmetrical multiphase induction machines (IMs) with any phase number m . Furthermore, additional rotating current controllers in the first SC control loop are added to reduce the low-order current harmonics during the fault-tolerant operation. Experimental evaluations in terms of the transient, dynamic and harmonic performances on both five-phase and nine-phase IM drive platforms are provided to verify the effectiveness of the proposed fault-tolerant strategy.
               
Click one of the above tabs to view related content.